Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 7(1): 3, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22222099

RESUMO

LiFePO4 nanocrystals were synthesized at a very low temperature of 170°C using carbon nanoparticles by a solvothermal process in a polyol medium, namely diethylene glycol without any heat treatment as a post procedure. The powder X-ray diffraction pattern of the LiFePO4 was indexed well to a pure orthorhombic system of olivine structure (space group: Pnma) with no undesirable impurities. The LiFePO4 nanocrystals synthesized at low temperature exhibited mono-dispersed and carbon-mixed plate-type LiFePO4 nanoparticles with average length, width, and thickness of approximately 100 to 300 nm, 100 to 200 nm, and 50 nm, respectively. It also appeared to reveal considerably enhanced electrochemical properties when compared to those of pristine LiFePO4. These observed results clearly indicate the effect of carbon in improving the reactivity and synthesis of LiFePO4 nanoparticles at a significantly lower temperature.

2.
J Nanosci Nanotechnol ; 11(8): 7294-8, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22103180

RESUMO

Li4Ti5O12 (LTO) nanoparticles were successfully synthesized by solvothermal technique using cost-effective precursors in polyol medium and post-annealed at temperatures of 400, 500, and 600 degrees C. The XRD patterns of the samples were clearly indexed to the spinel shaped Li4Ti5O12 (space group, Fd-3 m). The particle size and morphology of samples were identified using field-emission SEM. The electrochemical performance of solvothermal samples revealed fairly high initial discharge/charge specific capacities in the range 230-235 and 170-190 mAh/g, at 1 C-rate, while that registered for the solid-state sample has been 160 and 150 mAh/g, respectively. Furthermore, among these samples, LTO annealed at 500 degrees C exhibited highly improved rate performances at C-rates as high as 30 and 60 C. This was attributed to the achievement of small particle sizes with high crystallinity in nano-scale dimensions and hence shorter diffusion paths combined with larger contact area at the electrode/electrolyte interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...